デジタル変調解析に関する翻訳で、RLS、LMSという言葉が出てくる(例えば、W1902 デジタル・モデム・ライブラリのp3)。RLSはRecursive Least Square(再帰的(逐次的)最小2乗法)の略で、LMSはLeast Mean Square(最小2乗平均)の略である。
現在、携帯電話、液晶テレビ、DVD/ブルーレイプレーヤなど、身の回りの電化製品はほぼすべてデジタル化され、デジタル信号処理によりさまざまな機能が実現されている。このようなデジタル信号処理技術の中に、反射や干渉信号、雑音などが存在する信号環境から必要な信号を抽出するための技術があり、適応信号処理と呼ばれている。
適応信号処理とは、環境の変化(反射/干渉信号や雑音が時々刻々変化する環境)に応じて(適応して)、自動的に自身の特性を変化させて(自身の特性に環境と逆の特性を追加して)、最適な出力(反射/干渉信号や雑音が除去された信号)を得ることである(身近な例では、ノイズキャンセリング・イヤホンがある)。
上のような適応信号処理では、入力信号x(k)を未知の環境(システム)に印加したときに、そのシステムにより反射/干渉信号や雑音が付加された結果としての応答(出力信号d(k))を推定する(システム同定と呼ばれる)必要がある。システム同定には、通常、FIRフィルタで実現された適応フィルタを未知システムと並列に接続し、未知システムの応答d(k)と適応フィルタの応答y(k)との差信号(誤差信号e(k))がゼロに近づくように、FIRフィルタの係数を調整するアルゴリズム(適応アルゴリズムと呼ばれる)が用いられる。このアルゴリズムの種類に、LMSとRLSという手法がある。
LMSとRLSの詳細は非常に難しいが概要は以下のようである。
誤差信号e(k)がゼロに近づくようにするためには、誤差信号e(k)のパワーJ=E[e(k)^2]を最小化すればよい。
適応フィルタ(FIRフィルタ)の応答y(k)は、入力信号x(k-j)とFIRフィルタの係数(重みベクトル)h_j(k)との畳み込みで与えられるので、
J=E[e(k)^2]
=E[(d(k)-y(k))^2]
=E[(d(k)-Σh_j(k)x(k-j))^2]
となり、誤差パワーJはFIRフィルタの係数h_j(k)の2次関数となる。したがって、最適解(極小値)が存在し、解析的に求められる。しかし、時間平均E[…]を計算するので、その間にシステムの応答が変化すると誤差が大きくなることや解析的に求めるための逆行列の計算に時間がかかることから、LMSアルゴリズムでは、時間平均誤差ではなく誤差の瞬時値を用いて、最急降下法により係数を更新しながら最適値を求める。
RLSアルゴリズムでは、過去のすべての時刻での入力x_l(k)と出力y_l(k)の関係を重みベクトルh(k)を使用して、
y_l(k)=h(k)~Tx(l)、l=1,2、…、k、~Tは転置
と表したときに、時刻kでの誤差信号e_l(k)=d(l)-y_l(k)の2乗和(e_1(k)^2+e_2(k)^2+…+e_k(k)^2)を最小にするh(k)を求める。このとき、時刻が1つ進む毎に入力と出力の関係式が1つ追加され、それを利用して逐次的にフィルタ係数が最適される。これは、長時間のデータを用いてフィルタ係数を最適化することを意味するので、入力と出力の関係式が新しいほどその関係式を多く利用するように忘却係数を導入して、2乗和の計算で重みを付ける。
LMSについては、以下を参照。
Toshiya SAMEJIMA’s Personal Page > Lectures > 音響情報処理工学演習 > 11回目の授業(7月8日)(尾本)
RLSについては、以下を参照。
筑波大学 システム情報工学研究科 コンピュータサイエンス専攻 牧野昭二教授のホームページの<Journals and Transactions> > 54. S. Makino and Y. Kaneda, ”A new RLS adaptive algorithm based on the variation characteristics of a room impulse response, ” J. Acoust. Soc. Jpn, vol. 50, no. 1, pp. 32-39, Jan. 1994 (in Japanese).の [PDF]