SiC

半導体デバイス測定に関する翻訳で、GaNという言葉が出てくる(例えば、B1505A パワーデバイス・アナライザ/カーブトレーサのp2)。

半導体には、Si(シリコン)などのように1種類の元素を材料にしているものと、GaAs(ガリウムヒ素)などのように2種類以上の元素を材料にした化合物半導体がある。SiCは、化合物半導体の1つで、シリコン・カーバイド(Slicon Carbide)または炭化珪素と呼ばれる。

近年、二酸化炭素の排出削減による地球温暖化の緩和や原子力発電所停止に伴う電力不足の解消のために、電車、電気自動車、太陽光発電などの大電力の制御に使用されている電力変換器(インバータ)の高効率化(低損失化)の要求が高まっている。このような電力変換器に使用されているパワー半導体としては、Si(シリコン)を材料にしたIGBTがある。さらなる、高出力、高効率、高耐圧動作が可能な半導体デバイスとして、GaN(窒化ガリウム)とともにSiCが注目されている。

SiCパワー半導体は、GaNパワー半導体と同様にワイドバンドギャップ半導体と呼ばれ、Si半導体に比べてバンドギャップ幅が約3倍広いので、高温でもデバイス性能が劣化せず、冷却装置を不要/簡素化でき、小型のインバーターを実現できる。また、GaNパワー半導体と同様に、絶縁破壊電界もSi半導体に比べて約10倍大きく、Si半導体に比べて約1/1000のオン抵抗を実現して極めて効率の高い動作が可能である。

SiCパワー半導体とGaNパワー半導体の主な違いは、SiCパワー半導体がSiC単結晶基板上に形成するのに対して、GaNパワー半導体はSi基板上にGaN層を形成するので、高耐圧化が難しいことである。このことから、SiCパワー半導体は高耐圧、大電流アプリケーションに利用され、GaNパワー半導体は小型、高周波アプリケーションに利用されている。

SiCについては、以下を参照

SiCパワー素子の技術開発競争、今後5年から10年が勝負

半導体のオン抵抗と絶縁破壊電界の関係については、以下を参照。

オン抵抗と耐圧

derating(ディレーティング)

測定器の仕様の翻訳で、derating(ディレーティング)という言葉がよく出てくる(例えば、IInfiniiVisionオシロスコーププローブ/アクセサリのp7)。

derating(ディレーティング)とは、 読んで字の如く、de(下げる)+rating(定格)で、電子部品/デバイスの分野では、最大定格よりも低い値で使用して、その部品/デバイスの信頼性を向上させること(故障率を低くすること)という意味である。ディレーティング仕様は、上のpdfファイルのようにディレーティング曲線として表されたり、オシロスコープのプローブの最大許容電圧の仕様に、

周波数ディレーティング:400 Vpk(40 kHzまで)。6 Vpkまで20 dB/decadeでディレーティング

のように記載されている。

電子部品/デバイスは、印加する電圧、電流、電力、周波数や接続する負荷による電気的なストレス、温度や湿度などの環境的なストレスの累積によって故障が生じる。したがって、これらのストレス項目の最大定格値を下回る値で使用すれば一般的には故障率は下がる。しかし、電子部品/デバイスによっては、ディレーティングを行っても故障率がそれほど変わらなかったり、極端なディレーティングを行なうと逆に故障率が上昇するストレス項目もある。

ディレーティングについては、以下を参照。

ディレーティング(derating)

memory depth(メモリ長)

オシロスコープ測定の翻訳で、memory depth(メモリ長)という言葉がよく出てくる(例えば、InfiniiVision 1000 Xシリーズ オシロスコープのp17)。

デジタル・オシロスコープの波形表示プロセスでは、アナログ波形を高速なA/Dコンバーターで、一定の時間間隔毎にサンプリング(デジタイズ)して、(ディスプレイに表示するためのデジタル処理に時間がかかるので)一時的に高速な波形メモリに記録しておく。

メモリ長(レコード長とも呼ばれる)とは、この高速波形メモリに記録できる波形のポイント数(サンプル数)のことである。連続して記録できる波形の時間長は、サンプリング間隔(1/サンプリング・レート)とメモリ長の積なので、例えば、最高サンプリング・レートが1Gサンプル/秒、メモリ長が10Kポイントのオシロスコープの場合は、波形を10μsの時間だけ連続してディスプレイに表示できる。このようなメモリ長の小さいオシロスコープでは、時間軸の設定を遅くすると、ディスプレイ全体に波形が表示されなくなるので、時間軸の設定が遅い場合は、サンプリング・レートを自動的に低く設定して、波形をディスプレイ全体に表示するようになっている。しかし、サンプリング・レートが低くなるとエリアシング誤差が発生しやすくなる。

逆に、大容量メモリを搭載したオシロスコープでは、時間軸設定を遅くしても最高サンプリング・レートでディスプレイに表示できるので、エリアシング誤差が発生せず、長い時間範囲にわたって波形を詳細に観測できる。

オシロスコープのメモリ長については、以下を参照。

組み込みエンジニア必須のスキル – オシロの基本を身に着ける > 第5回 観測する波形からオシロスコープを選ぼう – その1