Gummel-Poon model(Gummel-Poonモデル)

図1

図1


半導体デバイス測定に関する翻訳で、Gummel-Poon model(Gummel-Poonモデル)という言葉が出てくる(例えば、IC-CAP デバイス・モデリング・ソフトウェアのp6)。

Gummel-Poonモデルは、以下のようなバイポーラ・トランジスタ(BJT)のデバイス・モデルである。

最初に、トランジスタを2つのpn接合ダイオードの結合と考える、Ebers-Mollモデルを説明する。pn接合ダイオードの理論的なI-V特性は、図1の1番上の式で与えられる。トランジスタのB(ベース)-C(コレクタ)間、B(ベース)-E(エミッタ)間をダイオードと考え、ダイオードの理論式を適用し、トランジスタの順方向電流増幅率と逆方向電流増幅率、キルヒホッフの電流則を用いると、Ebers-Mollモデルは、図1の下図のような等価回路で表わされる。

図2

図2


Gummel-Poonモデルは、Ebers-Mollモデルに、以下を追加したモデルである。

1)ベース、エミッタ、コレクタの寄生抵抗を追加する(図2の上図)。

2)トランジスタのIc-Vce特性を現実的な特性にするために、ベース幅変調(アーリ効果)を導入する(図2の下図)。

図3

図3


3)空乏層容量(pn接合により生じる、図3の上図)、接合容量または拡散容量(pn接合に順バイアスを印加したときに現れる、図3の中図)、寄生容量(サブストレート(S)の存在による、図3の左下図)による電荷蓄積効果を導入する。

以上をまとめると、Gummel-Poonモデルは、図3の右下図のような等価回路となる。

pn接合ダイオード、バイポーラ・トランジスタ、Ebers-Mollモデルについては、以下を参照。

山形大学大学院理工学研究科廣瀬文研究室 > 半導体デバイス教科書プロジェクトの第3章 pn接合第5章 バイポーラトランジスタ

Gummel-Poonモデルについては、以下を参照

大阪大学 オープンコースウェア > 工学部・工学研究科 > 286162 – 高周波集積回路設計, Spring Term, 2005 > 講義資料 > rf-no-2

An Integral Charge Control Model of Bipolar Transsisters(英語pdf、原論文)

コメントは受け付けていません。